Skip to main content

一文讲透无线信道衰落

直观理解

在无线通信的环境中,想象从 transmitter 发出的信号会从不同的方向发射出,这些信号会通过不同的路径,遇到不同的障碍,最后汇集在接收端。

往往来说,我们最后得到的都会比原有信号的质量更差,我们就把这样的信号损失(signal deuteriation) 叫做衰落 (fading)。

衰落类型分类

在对无线信道的分类中,我们很容易对两组分类感到混淆。一组是大尺度衰落和小尺度衰落(large scale vs. small scale),另一组是慢衰落和快衰落(slow vs. fast)。

其实两种分类本质上没区别,我们这里沿用后一种分类。我相信大家刚开始接触到,慢衰落和快衰落时都有这么一个疑问:

到底多快才算是快衰落?多慢才是慢衰落?

我这里先把完整的英文定义贴出来,大家仔细品一品:

Fast Fading is used to describe channels in which Channel Coherence Time < Transmission Symbol Time. Fast Fading describes a condition where the time duration in which the channel behaves in a correlated manner is short compared to the time duration of a symbol. Therefore, it can be expected that the fading characteristic of the channel will change several times while a symbol is propagating, leading to distortion of the baseband pulse shape. Analogous to the distortion described as ISI, the distortion take place because the received signal's components are not all highly correlated throughout time.

Slow Fading is used to describe channels in which Channel Coherence Time > Transmission Symbol Time. Here, the time duration that the channel behaves in a correlated manner is long compared to the time duration of a transmission symbol. Thus, one can expect the channel state to virtually remain unchanged during the time in which a symbol is transmitted. The propagating symbols will likely not suffer from the pulse distortion. The primary degradation in a slow-fading channel, as with flat fading, is loss in SNR.

这里重点提到了一个概念,Coherence Time (相干时间)。我自己很不喜欢「相干」二字的翻译,如果从 Coherence 另一个含义出发,代表的是「一致性」。

也就是说如果 Coherence time 大于 Transmission Symbol Time,那么在一个 Transmission Symbol Time,信道条件保持一致,不发生剧烈的改变。

Slow fading 慢衰落

一般 Slow fading 分为两大类:路径损耗(Pathloss)和阴影衰落(Shadowing)。

路径损耗

在自由空间中,电磁波的强度随距离的增加而降低,对应有如下公式:

Pr=GrGt(λ4πd)2PtP_{r}=G_{r}G_{t}({ \frac{\lambda}{4\pi d}})^{2} P_{t}

其中 PrP_{r} 表示接收功率,PtP_{t} 是接收功率,Gr,GtG_{r},G_{t} 分别是接收增益和发射增益,λ\lambda 是电磁波波长,dd 是发射天线和接收天线之间的距离。

更常用的做法是把路径损耗表达为 dB 的形式:

L(dB)=32.44+20log10f+20log10dL(dB)= 32.44+20\log_{10}f+20\log_{10}d

我们直接来看一个计算 pathloss 的例子(由 ChatGPT 提供):

Suppose we have a point-to-point communication link between two buildings, where one building has a transmitter and the other has a receiver. The application is a wireless IP camera system for remote monitoring.

Parameters:

  1. Transmitter output power (Pt): 20 dBm
  2. Receiver sensitivity (Pr): -85 dBm
  3. Path loss model: Urban, 2.4 GHz frequency, 200 meters distance (estimated path loss Lp = 100 + 20_log10(d) + 20_log10(f), where d is the distance in meters, and f is the frequency in GHz)
  4. Antenna patterns: Directional antennas (patch antennas) with a gain of 14 dBi at both transmitter and receiver.

Link budget calculation:

  1. Calculate path loss (Lp): Lp = 100 + 20_log10(200) + 20_log10(2.4) = 100 + 46 + 7.6 ≈ 153.6 dB
  2. Calculate total antenna gain (Gt + Gr): Gt (transmitter antenna gain) = 14 dBi Gr (receiver antenna gain) = 14 dBi Total antenna gain = Gt + Gr = 14 + 14 = 28 dBi
  3. Calculate the link margin (LM): LM = Pt - Lp + (Gt + Gr) - Pr LM = 20 - 153.6 + 28 - (-85) LM = 20 - 153.6 + 28 + 85 = 20.4 dB

In this example, the link margin is 20.4 dB, which means the signal strength at the receiver is 20.4 dB above the minimum required sensitivity for proper operation. This positive link margin indicates that the communication link should be reliable, considering the directional antenna pattern and the gain of the antennas.

阴影衰落

阴影衰落(shadowing)指的是电磁波在传播路径上遇到起伏的山丘,建筑物,树林等建筑物的阻挡,形成电磁波的阴影区,引起的信号强度的变化。

这种衰落一般了解即可,大家不需要深究。

Fast Fading 快衰落

我们先来辨析一下快衰落和慢衰落的区别。快衰落和慢衰落是由相干时间和传输一个符号的时间的大小决定的快衰落是由于终端的移动而引起信道衰落的变化较快。

快衰落还有一个等价的多普勒效应解释:信道的相干时间TcoherentT_{coherent} <传输一个符号的时间,即在一个符号传播的过程中,信道的衰减特性将发生多次变化,导致基带脉冲波形的失真

因此,快衰落会导致基带脉冲波形失真,造成信噪比的损失,通常会产生不可还原的错误,这种扭曲的脉冲会导致同步问题

慢衰落的多普勒效应的解释为:信道的相干时间 TcoherentT_{coherent} >传输一个符号的时间**,即在一个符号传播的过程中,信道的特性可看成近似不变。

因此,在慢衰落唯一的损失就是会造成SNR的损失

Frequency Selective Fading

先上定义:

Frequency selective fading, also known as frequency-selective multipath fading, is a type of signal fading that occurs when a wireless signal is transmitted through a multipath propagation environment. In such an environment, the signal reaches the receiver via multiple paths, each with a different path length and phase shift. As a result, different frequency components of the signal may experience different levels of attenuation or amplification, leading to a frequency-dependent signal distortion known as frequency selective fading.

简单而言,频率选择衰落是由于多径效应引起的(Multipath Propagation),由于到底接收端的幅度和相位不同,导致不同频率的分量遭受了不同程度的衰落。

与频率选择性对应的概念是「相干带宽」(Coherence Bandwidth)。

Bcoherent1TspreadB_{coherent}\propto \frac{{1}}{T_{spread}}

这里的 Tspread{T_{spread}} 指的是信道的冲击响应 h(t)h(t) 持续的时间,称之为时延扩展(time delay)。

我们能得出下面的关系:

  • If signal bandwidth B<BcB<B_{c} -> flat fading, no ISI(符号间干扰)
  • If signal bandwidth B>BcB>B_{c} -> frequency selective fading, ISI exists

Time Selective Fading

先介绍一下多普勒频移的概念。简单来说,如果发送端和接收端是以一定速度在移动的,那么对应的频率也会发生变化。

来看下面这么一个例子:

之前提到的相干时间,用来描述的是信道变化速度的快慢,而信道变化的频率其实就与相干时间成反比:

Tcoherent1fdopplerT_{coherent}\propto \frac{{1}}{f_{doppler}}

因此呢,在不同的时间层面上,衰落不一样。

在 Frequency Selective Fading 里对应的是概念是「信道带宽」和「相干带宽」,而在对偶的 Time Selective Fading 里面对应的概念是「相干时间」和「符号传输时间」。

常见的无线衰落信道

Rayleigh Fading

瑞利衰落多条反射路径叠加的结果。每条路径到达接收机的时间相差不多,且每条路径的相位可以认为是独立的。如果所有的路径是独立同分布的随机变量,则根据大数定律,叠加的结果服从复高斯分布,幅度服从瑞利分布相位服从均匀分布

定义信道模型如下:

function H = Ray_model(N)
%% 瑞利信道模型
% 输入:
% N : 仿真的符号数
% 输出:
% H : 信道向量
H = (rand(1, N) + 1j * randn(1, N)) / sqrt(2);
end

Rician Fading

莱斯衰落LoS路径多条反射径叠加的结果,幅度服从莱斯分布,相位服从均匀分布

莱斯因子 KK 定义为LoS分量功率 cc 和NLoS分量功率 2σ22\sigma^{2} 之比:

K=c2σ2K = \frac{c}{2\sigma^{2}}

随着 KK的增大,接收信号的PDF趋于高斯的PDF。

通常,对于瑞利衰落信道来说 KK≈−40dB ,对于高斯信道来说 KK>15dB 。

function H = Ric_model(K_dB, N)
% 莱斯信道模型
% 输入:
% K_dB : 莱斯因子(dB)
% N : 仿真符号数
K = 10 ^(K_dB / 10);
H = sqrt(K / (K + 1)) + sqrt(1 / (K + 1)) * Ray_model(N);
% LoS分量:sqrt(K / (K + 1));NLoS分量:sqrt(1 / (K + 1)) * Ray_model(N)
end

Reference